内容标题33

  • <tr id='sUz0gE'><strong id='sUz0gE'></strong><small id='sUz0gE'></small><button id='sUz0gE'></button><li id='sUz0gE'><noscript id='sUz0gE'><big id='sUz0gE'></big><dt id='sUz0gE'></dt></noscript></li></tr><ol id='sUz0gE'><option id='sUz0gE'><table id='sUz0gE'><blockquote id='sUz0gE'><tbody id='sUz0gE'></tbody></blockquote></table></option></ol><u id='sUz0gE'></u><kbd id='sUz0gE'><kbd id='sUz0gE'></kbd></kbd>

    <code id='sUz0gE'><strong id='sUz0gE'></strong></code>

    <fieldset id='sUz0gE'></fieldset>
          <span id='sUz0gE'></span>

              <ins id='sUz0gE'></ins>
              <acronym id='sUz0gE'><em id='sUz0gE'></em><td id='sUz0gE'><div id='sUz0gE'></div></td></acronym><address id='sUz0gE'><big id='sUz0gE'><big id='sUz0gE'></big><legend id='sUz0gE'></legend></big></address>

              <i id='sUz0gE'><div id='sUz0gE'><ins id='sUz0gE'></ins></div></i>
              <i id='sUz0gE'></i>
            1. <dl id='sUz0gE'></dl>
              1. <blockquote id='sUz0gE'><q id='sUz0gE'><noscript id='sUz0gE'></noscript><dt id='sUz0gE'></dt></q></blockquote><noframes id='sUz0gE'><i id='sUz0gE'></i>

                1月21日 张雷洪 教授学门人之中术报告(数学与统计学院㊣)

                来源:数学科研研究生作者:时间:2021-01-20浏览:474设置

                报 告 人:张雷洪 教授

                报告题目A Self-Consistent-Field Iteration for Orthogonal Canonical Correlation Analysis

                报告时间:2021年1月21日(周四)上午 10: 00-11:00

                报告地点:腾讯会议 (ID:210270491 密码:314159)

                主办单位:数学与统计学院、科学技术研究院

                报告人简◣介

                    张雷洪于2008年博士毕业于香港浸会大学,现为苏州大学数学科学学院ω特聘教授、博士生♂导师。长期从事最优化理论与计算、数值『线性代数、模式识别、数据挖掘等领域的研究。主持国家自然科学基金青年/面上项目,参与国家自然科学基金重大≡研究计划。在数值代数、最优化及数据科学相关的研究上,发表近50篇SCI学术论文。其中有发表于计算数学和机←器学习领域权↓威期刊,如《Mathematics of Computation》、《Numerische Mathematik》、《Journal of Scientific Computing》、《IMA Journal of Numerical Analysis》、《IEEE Transactions on Pattern Analysis and Machine Intelligence》,以及十余篇发表于美国工业与应用数学协会 (Society for Industrial and Applied Mathematics,SIAM)旗①下的期刊等。曾获第四届中国数学会计算数学分会颁发的“应用说道数值代数奖☉’’、上◣海财经大学第四届学术奖、2018和2019年两届世界华人数学家∴联盟最佳论文奖(若琳奖),及2019年上海市自然科学下意识三等奖(第一完成人) 等。现为学术杂志《Operators and Matrices》(SCI)和《Cogent Mathematics & Statistics》的编委。

                 

                报告摘要

                In this talk, we propose an efficient algorithm for solving orthogonal canonical correlation analysis (OCCA) in the form of trace-fractional structure and orthogonal linear projections. Even though orthogonality has been widely used and proved to be a useful criterion for visualization, pattern recognition and feature extraction, existing methods for solving OCCA problem are either numerically unstable by relying on a deflation scheme, or less efficient by directly using generic optimization methods. Within an alternating optimization scheme, a customized self-consistent-field (SCF) iteration for a core trace-fractional sub-maximization over orthogonality constraint is devised and analyzed. The SCF iteration is further extended to deal with the multi-view CCA. Experiments on real-world applications of multi-label classification and multi-view feature extraction will be reported to demonstrate the efficiency of the proposed method.


                返回原图
                /